EconPapers    
Economics at your fingertips  
 

A graphical test for local self-similarity in univariate data

Rakhee Dinubhai Patel and Frederic Paik Schoenberg

Journal of Applied Statistics, 2011, vol. 38, issue 11, 2547-2562

Abstract: The Pareto distribution, or power-law distribution, has long been used to model phenomena in many fields, including wildfire sizes, earthquake seismic moments and stock price changes. Recent observations have brought the fit of the Pareto into question, however, particularly in the upper tail where it often overestimates the frequency of the largest events. This paper proposes a graphical self-similarity test specifically designed to assess whether a Pareto distribution fits better than a tapered Pareto or another alternative. Unlike some model selection methods, this graphical test provides the advantage of highlighting where the model fits well and where it breaks down. Specifically, for data that seem to be better modeled by the tapered Pareto or other alternatives, the test assesses the degree of local self-similarity at each value where the test is computed. The basic properties of the graphical test and its implementation are discussed, and applications of the test to seismological, wildfire, and financial data are considered.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.559211 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:11:p:2547-2562

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2011.559211

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:38:y:2011:i:11:p:2547-2562