EconPapers    
Economics at your fingertips  
 

Extreme value and cluster analysis of European daily temperature series

Manuel G. Scotto, Susana M. Barbosa and Andr�s M. Alonso

Journal of Applied Statistics, 2011, vol. 38, issue 12, 2793-2804

Abstract: Time series of daily mean temperature obtained from the European Climate Assessment data set is analyzed with respect to their extremal properties. A time-series clustering approach which combines Bayesian methodology, extreme value theory and classification techniques is adopted for the analysis of the regional variability of temperature extremes. The daily mean temperature records are clustered on the basis of their corresponding predictive distributions for 25-, 50- and 100-year return values. The results of the cluster analysis show a clear distinction between the highest altitude stations, for which the return values are lowest, and the remaining stations. Furthermore, a clear distinction is also found between the northernmost stations in Scandinavia and the stations in central and southern Europe. This spatial structure of the return period distributions for 25-, 50- and 100-years seems to be consistent with projected changes in the variability of temperature extremes over Europe pointing to a different behavior in central Europe than in northern Europe and the Mediterranean area, possibly related to the effect of soil moisture and land-atmosphere coupling.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.570317 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:12:p:2793-2804

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2011.570317

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:38:y:2011:i:12:p:2793-2804