Cross-validating fit and predictive accuracy of nonlinear quantile regressions
Harry Haupt,
Kathrin Kagerer and
Joachim Schnurbus
Journal of Applied Statistics, 2011, vol. 38, issue 12, 2939-2954
Abstract:
The paper proposes a cross-validation method to address the question of specification search in a multiple nonlinear quantile regression framework. Linear parametric, spline-based partially linear and kernel-based fully nonparametric specifications are contrasted as competitors using cross-validated weighted L 1 -norm based goodness-of-fit and prediction error criteria. The aim is to provide a fair comparison with respect to estimation accuracy and/or predictive ability for different semi- and nonparametric specification paradigms. This is challenging as the model dimension cannot be estimated for all competitors and the meta-parameters such as kernel bandwidths, spline knot numbers and polynomial degrees are difficult to compare. General issues of specification comparability and automated data-driven meta-parameter selection are discussed. The proposed method further allows us to assess the balance between fit and model complexity. An extensive Monte Carlo study and an application to a well-known data set provide empirical illustration of the method.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.573542 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:12:p:2939-2954
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2011.573542
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().