A robust diagnostic plot for explanatory variables under model mis-specification
Li-Chu Chien
Journal of Applied Statistics, 2011, vol. 38, issue 1, 113-126
Abstract:
A typical added variable plot is a commonly used plot in assessing the accuracy of a normal linear model. This plot is often used to evaluate the effect of adding an explanatory variable into the model and to detect possibly high leverage points or influential observations on the added variable. However, this type of plot is generally in doubt, once the normal distributional assumptions are violated. In this article, we extend the robust likelihood technique introduced by Royall and Tsou [11] to propose a robust added variable plot. The validity of this diagnostic plot requires no knowledge of the true underlying distributions so long as their second moments exist. The usefulness of the robust graphical approach is demonstrated through a few illustrations and simulations.
Keywords: added variable plot; high leverage points; influential data; adjusted normal regression (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760903271940 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:1:p:113-126
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760903271940
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().