EconPapers    
Economics at your fingertips  
 

Marginal correlation from an extended random-effects model for repeated and overdispersed counts

Tony Vangeneugden, Geert Molenberghs, Geert Verbeke and Clarice G.B. Dem�trio

Journal of Applied Statistics, 2011, vol. 38, issue 2, 215-232

Abstract: Vangeneugden et al. [15] derived approximate correlation functions for longitudinal sequences of general data type, Gaussian and non-Gaussian, based on generalized linear mixed-effects models (GLMM). Their focus was on binary sequences, as well as on a combination of binary and Gaussian sequences. Here, we focus on the specific case of repeated count data, important in two respects. First, we employ the model proposed by Molenberghs et al. [13], which generalizes at the same time the Poisson-normal GLMM and the conventional overdispersion models, in particular the negative-binomial model. The model flexibly accommodates data hierarchies, intra-sequence correlation, and overdispersion. Second, means, variances, and joint probabilities can be expressed in closed form, allowing for exact intra-sequence correlation expressions. Next to the general situation, some important special cases such as exchangeable clustered outcomes are considered, producing insightful expressions. The closed-form expressions are contrasted with the generic approximate expressions of Vangeneugden et al. [15]. Data from an epileptic-seizures trial are analyzed and correlation functions derived. It is shown that the proposed extension strongly outperforms the classical GLMM.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664760903406405 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:2:p:215-232

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760903406405

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:38:y:2011:i:2:p:215-232