Assessing cumulative logit models via a score test in random effect models
Kuo-Chin Lin
Journal of Applied Statistics, 2011, vol. 38, issue 2, 247-259
Abstract:
The purpose of this article is to develop a goodness-of-fit test based on score test statistics for cumulative logit models with extra variation of random effects. Two main theorems for the proposed score test statistics are derived. In simulation studies, the powers of the proposed tests are discussed and the power curve against a variety of dispersion parameters and bandwidths is depicted. The proposed method is illustrated by an ordinal data set from Mosteller and Tukey [23].
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664760903406421 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:2:p:247-259
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760903406421
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().