EconPapers    
Economics at your fingertips  
 

Outlier identification and robust parameter estimation in a zero-inflated Poisson model

Jun Yang, Min Xie and Thong Ngee Goh

Journal of Applied Statistics, 2011, vol. 38, issue 2, 421-430

Abstract: The Zero-inflated Poisson distribution has been used in the modeling of count data in different contexts. This model tends to be influenced by outliers because of the excessive occurrence of zeroes, thus outlier identification and robust parameter estimation are important for such distribution. Some outlier identification methods are studied in this paper, and their applications and results are also presented with an example. To eliminate the effect of outliers, two robust parameter estimates are proposed based on the trimmed mean and the Winsorized mean. Simulation results show the robustness of our proposed parameter estimates.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664760903456426 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:2:p:421-430

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760903456426

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:38:y:2011:i:2:p:421-430