Bootstrap study of parameter estimates for nonlinear Richards growth model through genetic algorithm
Himadri Ghosh,
M. A. Iquebal and
Prajneshu
Journal of Applied Statistics, 2011, vol. 38, issue 3, 491-500
Abstract:
Richards nonlinear growth model, which is a generalization of the well-known logistic and Gompertz models, generally provides a realistic description of many phenomena. However, this model is very rarely used as it is extremely difficult to fit it by employing nonlinear estimation procedures. To this end, utility of using a very powerful optimization technique of genetic algorithm is advocated. Parametric bootstrap methodology is then used to obtain standard errors of the estimates. Subsequently, bootstrap confidence-intervals are constructed by two methods, viz. the Percentile method, and Bias-corrected and accelerated method. The methodology is illustrated by applying it to India's total annual foodgrain production time-series data.
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664760903521401 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:3:p:491-500
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760903521401
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().