EconPapers    
Economics at your fingertips  
 

Bootstrap study of parameter estimates for nonlinear Richards growth model through genetic algorithm

Himadri Ghosh, M. A. Iquebal and Prajneshu

Journal of Applied Statistics, 2011, vol. 38, issue 3, 491-500

Abstract: Richards nonlinear growth model, which is a generalization of the well-known logistic and Gompertz models, generally provides a realistic description of many phenomena. However, this model is very rarely used as it is extremely difficult to fit it by employing nonlinear estimation procedures. To this end, utility of using a very powerful optimization technique of genetic algorithm is advocated. Parametric bootstrap methodology is then used to obtain standard errors of the estimates. Subsequently, bootstrap confidence-intervals are constructed by two methods, viz. the Percentile method, and Bias-corrected and accelerated method. The methodology is illustrated by applying it to India's total annual foodgrain production time-series data.

Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664760903521401 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:3:p:491-500

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760903521401

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:38:y:2011:i:3:p:491-500