EconPapers    
Economics at your fingertips  
 

Spatio-temporal functional regression on paleoecological data

Liliane Bel, Avner Bar-Hen, R�my Petit and Rachid Cheddadi

Journal of Applied Statistics, 2011, vol. 38, issue 4, 695-704

Abstract: There is much interest in predicting the impact of global warming on the genetic diversity of natural populations and the influence of climate on biodiversity is an important ecological question. Since Holocene, we face many climate perturbations and the geographical ranges of plant taxa have changed substantially. Actual genetic diversity of plant is a result of these processes and a first step to study the impact of future climate change is to understand the important features of reconstructed climate variables such as temperature or precipitation for the last 15,000 years on actual genetic diversity of forest. We model the relationship between genetic diversity in the European beech (Fagus sylvatica) forests and curves of temperature and precipitation reconstructed from pollen databases. Our model links the genetic measure to the climate curves. We adapt classical functional linear model to take into account interactions between climate variables as a bilinear form. Since the data are georeferenced, our extensions also account for the spatial dependence among the observations. The practical issues of these methodological extensions are discussed.

Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664760903563650 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:4:p:695-704

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760903563650

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:38:y:2011:i:4:p:695-704