Full Bayesian significance test for extremal distributions
Diego F. de Bernardini and
Laura L.R. Rifo
Journal of Applied Statistics, 2011, vol. 38, issue 4, 851-863
Abstract:
A new Bayesian measure of evidence is used for model choice within the generalized extreme value family of distributions, given an absolutely continuous posterior distribution on the related parametric space. This criterion allows quantitative measurement of evidence of any sharp hypothesis, with no need of a prior distribution assignment to it. We apply this methodology to the testing of the precise hypothesis given by the Gumbel model using real data. Performance is compared with usual evidence measures, such as Bayes factor, Bayesian information criterion, deviance information criterion and descriptive level for deviance statistic.
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664761003692340 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:4:p:851-863
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664761003692340
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().