Classification with discrete and continuous variables via general mixed-data models
A. R. de Leon,
A. Soo and
T. Williamson
Journal of Applied Statistics, 2011, vol. 38, issue 5, 1021-1032
Abstract:
We study the problem of classifying an individual into one of several populations based on mixed nominal, continuous, and ordinal data. Specifically, we obtain a classification procedure as an extension to the so-called location linear discriminant function, by specifying a general mixed-data model for the joint distribution of the mixed discrete and continuous variables. We outline methods for estimating misclassification error rates. Results of simulations of the performance of proposed classification rules in various settings vis-à-vis a robust mixed-data discrimination method are reported as well. We give an example utilizing data on croup in children.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664761003758976 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:5:p:1021-1032
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664761003758976
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().