Bayesian latent variable model for mixed continuous and ordinal responses with possibility of missing responses
E. Bahrami Samani and
M. Ganjali
Journal of Applied Statistics, 2011, vol. 38, issue 6, 1103-1116
Abstract:
A general framework is proposed for joint modelling of mixed correlated ordinal and continuous responses with missing values for responses, where the missing mechanism for both kinds of responses is also considered. Considering the posterior distribution of unknowns given all available information, a Markov Chain Monte Carlo sampling algorithm via winBUGS is used for estimating the posterior distribution of the parameters. For sensitivity analysis to investigate the perturbation from missing at random to not missing at random, it is shown how one can use some elements of covariance structure. These elements associate responses and their missing mechanisms. Influence of small perturbation of these elements on posterior displacement and posterior estimates is also studied. The model is illustrated using data from a foreign language achievement study.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2010.484485 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:6:p:1103-1116
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2010.484485
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().