Testing stochastic orders in tails of contingency tables
Chi Tim Ng,
Johan Lim and
Kyu S. Hahn
Journal of Applied Statistics, 2011, vol. 38, issue 6, 1133-1149
Abstract:
Testing for the difference in the strength of bivariate association in two independent contingency tables is an important issue that finds applications in various disciplines. Currently, many of the commonly used tests are based on single-index measures of association. More specifically, one obtains single-index measurements of association from two tables and compares them based on asymptotic theory. Although they are usually easy to understand and use, often much of the information contained in the data is lost with single-index measures. Accordingly, they fail to fully capture the association in the data. To remedy this shortcoming, we introduce a new summary statistic measuring various types of association in a contingency table. Based on this new summary statistic, we propose a likelihood ratio test comparing the strength of association in two independent contingency tables. The proposed test examines the stochastic order between summary statistics. We derive its asymptotic null distribution and demonstrate that the least favorable distributions are chi-bar distributions. We numerically compare the power of the proposed test to that of the tests based on single-index measures. Finally, we provide two examples illustrating the new summary statistics and the related tests.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2010.484487 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:6:p:1133-1149
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2010.484487
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().