Empirical likelihood for generalized partially linear varying-coefficient models
Zhensheng Huang
Journal of Applied Statistics, 2011, vol. 38, issue 6, 1265-1275
Abstract:
Generalized partially linear varying-coefficient models (GPLVCM) are frequently used in statistical modeling. However, the statistical inference of the GPLVCM, such as confidence region/interval construction, has not been very well developed. In this article, empirical likelihood-based inference for the parametric components in the GPLVCM is investigated. Based on the local linear estimators of the GPLVCM, an estimated empirical likelihood-based statistic is proposed. We show that the resulting statistic is asymptotically non-standard chi-squared. By the proposed empirical likelihood method, the confidence regions for the parametric components are constructed. In addition, when some components of the parameter are of particular interest, the construction of their confidence intervals is also considered. A simulation study is undertaken to compare the empirical likelihood and the other existing methods in terms of coverage accuracies and average lengths. The proposed method is applied to a real example.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2010.498500 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:6:p:1265-1275
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2010.498500
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().