EconPapers    
Economics at your fingertips  
 

Normality testing: two new tests using L-moments

Ardian Harri and Keith Coble

Journal of Applied Statistics, 2011, vol. 38, issue 7, 1369-1379

Abstract: Establishing that there is no compelling evidence that some population is not normally distributed is fundamental to many statistical inferences, and numerous approaches to testing the null hypothesis of normality have been proposed. Fundamentally, the power of a test depends on which specific deviation from normality may be presented in a distribution. Knowledge of the potential nature of deviation from normality should reasonably guide the researcher's selection of testing for non-normality. In most settings, little is known aside from the data available for analysis, so that selection of a test based on general applicability is typically necessary. This research proposes and reports the power of two new tests of normality. One of the new tests is a version of the R -test that uses the L-moments, respectively, L-skewness and L-kurtosis and the other test is based on normalizing transformations of L-skewness and L-kurtosis. Both tests have high power relative to alternatives. The test based on normalized transformations, in particular, shows consistently high power and outperforms other normality tests against a variety of distributions.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2010.498508 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:7:p:1369-1379

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2010.498508

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-31
Handle: RePEc:taf:japsta:v:38:y:2011:i:7:p:1369-1379