Multivariate temporal disaggregation with cross-sectional constraints
Tommaso Proietti
Journal of Applied Statistics, 2011, vol. 38, issue 7, 1455-1466
Abstract:
Multivariate temporal disaggregation deals with the historical reconstruction and nowcasting of economic variables subject to temporal and contemporaneous aggregation constraints. The problem involves a system of time series that are related not only by a dynamic model but also by accounting constraints. The paper introduces two fundamental (and realistic) models that implement the multivariate best linear unbiased estimation approach that has potential application to the temporal disaggregation of the national accounts series. The multivariate regression model with random walk disturbances is most suitable to deal with the chained linked volumes (as the nature of the national accounts time series suggests); however, in this case the accounting constraints are not binding and the discrepancy has to be modeled by either a trend-stationary or an integrated process. The tiny, compared with other driving disturbances, size of the discrepancy prevents maximum-likelihood estimation to be carried out, and the parameters have to be estimated separately. The multivariate disaggregation with integrated random walk disturbances is suitable for the national accounts aggregates expressed at current prices, in which case the accounting constraints are binding.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2010.505952 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:7:p:1455-1466
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2010.505952
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().