A sequential conditional probability ratio test procedure for comparing diagnostic tests
Liansheng Tang,
Ming Tan and
Xiao-Hua Zhou
Journal of Applied Statistics, 2011, vol. 38, issue 8, 1623-1632
Abstract:
In this paper, we derive sequential conditional probability ratio tests to compare diagnostic tests without distributional assumptions on test results. The test statistics in our method are nonparametric weighted areas under the receiver-operating characteristic curves. By using the new method, the decision of stopping the diagnostic trial early is unlikely to be reversed should the trials continue to the planned end. The conservatism reflected in this approach to have more conservative stopping boundaries during the course of the trial is especially appealing for diagnostic trials since the end point is not death. In addition, the maximum sample size of our method is not greater than a fixed sample test with similar power functions. Simulation studies are performed to evaluate the properties of the proposed sequential procedure. We illustrate the method using data from a thoracic aorta imaging study.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2010.515678 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:8:p:1623-1632
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2010.515678
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().