Non-mixture cure correlated frailty models in Bayesian approach
Mitra Rahimzadeh,
Ebrahim Hajizadeh and
Farzad Eskandari
Journal of Applied Statistics, 2011, vol. 38, issue 8, 1651-1663
Abstract:
In this article, we develop a Bayesian approach for the estimation of two cure correlated frailty models that have been extended to the cure frailty models introduced by Yin [34]. We used the two different type of frailty with bivariate log-normal distribution instead of gamma distribution. A likelihood function was constructed based on a piecewise exponential distribution function. The model parameters were estimated by the Markov chain Monte Carlo method. The comparison of models is based on the Cox correlated frailty model with log-normal distribution. A real data set of bilateral corneal graft rejection was used to compare these models. The results of this data, based on deviance information criteria, showed the advantage of the proposed models.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2010.515966 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:8:p:1651-1663
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2010.515966
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().