A Monte Carlo simulation study on partially adaptive estimators of linear regression models
Yeliz Mert Kantar,
Ilhan Usta and
Şükrü Acıtaş
Journal of Applied Statistics, 2011, vol. 38, issue 8, 1681-1699
Abstract:
This paper presents a comprehensive comparison of well-known partially adaptive estimators (PAEs) in terms of efficiency in estimating regression parameters. The aim is to identify the best estimators of regression parameters when error terms follow from normal, Laplace, Student's t , normal mixture, lognormal and gamma distribution via the Monte Carlo simulation. In the results of the simulation, efficient PAEs are determined in the case of symmetric leptokurtic and skewed leptokurtic regression error data. Additionally, these estimators are also compared in terms of regression applications. Regarding these applications, using certain standard error estimators, it is shown that PAEs can reduce the standard error of the slope parameter estimate relative to ordinary least squares.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2010.516389 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:8:p:1681-1699
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2010.516389
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().