EconPapers    
Economics at your fingertips  
 

Nonparametric test for the homogeneity of the overall variability

Ashis SenGupta and Hon Keung Tony Ng

Journal of Applied Statistics, 2011, vol. 38, issue 9, 1751-1768

Abstract: In this paper, we propose a nonparametric test for homogeneity of overall variabilities for two multi-dimensional populations. Comparisons between the proposed nonparametric procedure and the asymptotic parametric procedure and a permutation test based on standardized generalized variances are made when the underlying populations are multivariate normal. We also study the performance of these test procedures when the underlying populations are non-normal. We observe that the nonparametric procedure and the permutation test based on standardized generalized variances are not as powerful as the asymptotic parametric test under normality. However, they are reliable and powerful tests for comparing overall variability under other multivariate distributions such as the multivariate Cauchy, the multivariate Pareto and the multivariate exponential distributions, even with small sample sizes. A Monte Carlo simulation study is used to evaluate the performance of the proposed procedures. An example from an educational study is used to illustrate the proposed nonparametric test.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2010.529876 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:9:p:1751-1768

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2010.529876

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:38:y:2011:i:9:p:1751-1768