EconPapers    
Economics at your fingertips  
 

A Bayesian approach to inference about a change point model with application to DNA copy number experimental data

Jie Chen, Ayten Yiğiter and Kuang-Chao Chang

Journal of Applied Statistics, 2011, vol. 38, issue 9, 1899-1913

Abstract: In this paper, we study the change-point inference problem motivated by the genomic data that were collected for the purpose of monitoring DNA copy number changes. DNA copy number changes or copy number variations (CNVs) correspond to chromosomal aberrations and signify abnormality of a cell. Cancer development or other related diseases are usually relevant to DNA copy number changes on the genome. There are inherited random noises in such data, therefore, there is a need to employ an appropriate statistical model for identifying statistically significant DNA copy number changes. This type of statistical inference is evidently crucial in cancer researches, clinical diagnostic applications, and other related genomic researches. For the high-throughput genomic data resulting from DNA copy number experiments, a mean and variance change point model (MVCM) for detecting the CNVs is appropriate. We propose to use a Bayesian approach to study the MVCM for the cases of one change and propose to use a sliding window to search for all CNVs on a given chromosome. We carry out simulation studies to evaluate the estimate of the locus of the DNA copy number change using the derived posterior probability. These simulation results show that the approach is suitable for identifying copy number changes. The approach is also illustrated on several chromosomes from nine fibroblast cancer cell line data (array-based comparative genomic hybridization data). All DNA copy number aberrations that have been identified and verified by karyotyping are detected by our approach on these cell lines.

Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2010.529886 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:9:p:1899-1913

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2010.529886

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:38:y:2011:i:9:p:1899-1913