EconPapers    
Economics at your fingertips  
 

Inference for a binomial proportion in the presence of ties

Paul H. Garthwaite and John R. Crawford

Journal of Applied Statistics, 2011, vol. 38, issue 9, 1915-1934

Abstract: We suppose a case is to be compared with controls on the basis of a test that gives a single discrete score. The score of the case may tie with the scores of one or more controls. However, scores relate to an underlying quantity of interest that is continuous and so an observed score can be treated as the rounded value of an underlying continuous score. This makes it reasonable to break ties. This paper addresses the problem of forming a confidence interval for the proportion of controls that have a lower underlying score than the case. In the absence of ties, this is the standard task of making inferences about a binomial proportion and many methods for forming confidence intervals have been proposed. We give a general procedure to extend these methods to handle ties, under the assumption that ties may be broken at random. Properties of the procedure are given and an example examines its performance when it is used to extend several methods. A real example shows that an estimated confidence interval can be much too small if the uncertainty associated with ties is not taken into account. Software implementing the procedure is freely available.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2010.537649 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:9:p:1915-1934

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2010.537649

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:38:y:2011:i:9:p:1915-1934