Spatio-temporal modeling and prediction of CO concentrations in Tehran city
Firoozeh Rivaz,
Mohsen Mohammadzadeh and
Majid Jafari Khaledi
Journal of Applied Statistics, 2011, vol. 38, issue 9, 1995-2007
Abstract:
One of the most important agents responsible for high pollution in Tehran is carbon monoxide. Prediction of carbon monoxide is of immense help for sustaining the inhabitants’ health level. In this paper, motivated by the statistical analysis of carbon monoxide using the empirical Bayes approach, we deal with the issue of prior specification for the model parameters. In fact, the hyperparameters (the parameters of the prior law) are estimated based on a sampling-based method which depends only on the specification of the marginal spatial and temporal correlation structures. We compare the predictive performance of this approach with the type II maximum likelihood method. Results indicate that the proposed procedure performs better for this data set.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2010.545108 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:9:p:1995-2007
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2010.545108
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().