Applying neural network Poisson regression to predict cognitive score changes
Nader Fallah,
Arnold Mitnitski and
Kenneth Rockwood
Journal of Applied Statistics, 2011, vol. 38, issue 9, 2051-2062
Abstract:
In this study, we combined a Poisson regression model with neural networks (neural network Poisson regression) to relax the traditional Poisson regression assumption of linearity of the Poisson mean as a function of covariates, while including it as a special case. In four simulated examples, we found that the neural network Poisson regression improved the performance of simple Poisson regression if the Poisson mean was nonlinearly related to covariates. We also illustrated the performance of the model in predicting five-year changes in cognitive scores, in association with age and education level; we found that the proposed approach had superior accuracy to conventional linear Poisson regression. As the interpretability of the neural networks is often difficult, its combination with conventional and more readily interpretable approaches under the generalized linear model can benefit applications in biomedicine.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2010.545112 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:9:p:2051-2062
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2010.545112
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().