An example of a two-part latent growth curve model for semicontinuous outcomes in the health sciences
Sterling McPherson and
Celestina Barbosa-Leiker
Journal of Applied Statistics, 2012, vol. 39, issue 10, 2113-2128
Abstract:
A new method of modeling coronary artery calcium (CAC) is needed in order to properly understand the probability of onset and growth of CAC. CAC remains a controversial indicator of cardiovascular disease (CVD) risk, but this may be due to ill-equipped methods of specifying CAC during the analysis phase of studies reporting an analysis where CAC is the primary outcome. The modern method of two-part latent growth modeling may represent a strong alternative to the myriad of existing methods for modeling CAC. We provide a brief overview of existing methods of analysis used for CAC before introducing the general latent growth curve model, how it extends into a two-part (semicontinuous) growth model, and how the ubiquitous problem of missing data can be effectively handled. We then present an example of how to model CAC using this framework. We demonstrate that utilizing this type of modeling strategy can result in traditional predictors of CAC (e.g. age, gender, and high-density lipoprotein cholesterol), exerting a different impact on the two different, yet simultaneous, operationalizations of CAC. This method of analyzing CAC could inform future analyses of CAC and inform subsequent discussions about the nature of its potential to inform long-term CVD risk and heart events.
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.702205 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:10:p:2113-2128
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2012.702205
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().