Optimal sample size planning for the Wilcoxon--Mann--Whitney and van Elteren tests under cost constraints
Jiin-Huarng Guo
Journal of Applied Statistics, 2012, vol. 39, issue 10, 2153-2164
Abstract:
Sampling cost is a crucial factor in sample size planning, particularly when the treatment group is more expensive than the control group. To either minimize the total cost or maximize the statistical power of the test, we used the distribution-free Wilcoxon--Mann--Whitney test for two independent samples and the van Elteren test for randomized block design, respectively. We then developed approximate sample size formulas when the distribution of data is abnormal and/or unknown. This study derived the optimal sample size allocation ratio for a given statistical power by considering the cost constraints, so that the resulting sample sizes could minimize either the total cost or the total sample size. Moreover, for a given total cost, the optimal sample size allocation is recommended to maximize the statistical power of the test. The proposed formula is not only innovative, but also quick and easy. We also applied real data from a clinical trial to illustrate how to choose the sample size for a randomized two-block design. For nonparametric methods, no existing commercial software for sample size planning has considered the cost factor, and therefore the proposed methods can provide important insights related to the impact of cost constraints.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.702265 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:10:p:2153-2164
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2012.702265
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().