Spatial modeling using frequentist approach for disease mapping
Mahmoud Torabi
Journal of Applied Statistics, 2012, vol. 39, issue 11, 2431-2439
Abstract:
In this article, a generalized linear mixed model (GLMM) based on a frequentist approach is employed to examine spatial trend of asthma data. However, the frequentist analysis of GLMM is computationally difficult. On the other hand, the Bayesian analysis of GLMM has been computationally convenient due to the advent of Markov chain Monte Carlo algorithms. Recently developed data cloning (DC) method, which yields to maximum likelihood estimate, provides frequentist approach to complex mixed models and equally computationally convenient method. We use DC to conduct frequentist analysis of spatial models. The advantages of the DC approach are that the answers are independent of the choice of the priors, non-estimable parameters are flagged automatically, and the possibility of improper posterior distributions is completely avoided. We illustrate this approach using a real dataset of asthma visits to hospital in the province of Manitoba, Canada, during 2000--2010. The performance of the DC approach in our application is also studied through a simulation study.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.711814 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:11:p:2431-2439
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2012.711814
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().