On inference for Kendall's τ within a longitudinal data setting
Yan Ma
Journal of Applied Statistics, 2012, vol. 39, issue 11, 2441-2452
Abstract:
Kendall's τ is a non-parametric measure of correlation based on ranks and is used in a wide range of research disciplines. Although methods are available for making inference about Kendall's τ, none has been extended to modeling multiple Kendall's τs arising in longitudinal data analysis. Compounding this problem is the pervasive issue of missing data in such study designs. In this article, we develop a novel approach to provide inference about Kendall's τ within a longitudinal study setting under both complete and missing data. The proposed approach is illustrated with simulated data and applied to an HIV prevention study.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.712954 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:11:p:2441-2452
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2012.712954
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().