EconPapers    
Economics at your fingertips  
 

Sample size for estimating a binomial proportion: comparison of different methods

Luzia Gonçalves, M. Rosário de Oliveira, Cláudia Pascoal and Ana Pires

Journal of Applied Statistics, 2012, vol. 39, issue 11, 2453-2473

Abstract: The poor performance of the Wald method for constructing confidence intervals (CIs) for a binomial proportion has been demonstrated in a vast literature. The related problem of sample size determination needs to be updated and comparative studies are essential to understanding the performance of alternative methods. In this paper, the sample size is obtained for the Clopper--Pearson, Bayesian (Uniform and Jeffreys priors), Wilson, Agresti--Coull, Anscombe, and Wald methods. Two two-step procedures are used: one based on the expected length (EL) of the CI and another one on its first-order approximation. In the first step, all possible solutions that satisfy the optimal criterion are obtained. In the second step, a single solution is proposed according to a new criterion (e.g. highest coverage probability (CP)). In practice, it is expected a sample size reduction, therefore, we explore the behavior of the methods admitting 30% and 50% of losses. For all the methods, the ELs are inflated, as expected, but the coverage probabilities remain close to the original target (with few exceptions). It is not easy to suggest a method that is optimal throughout the range (0, 1) for p . Depending on whether the goal is to achieve CP approximately or above the nominal level different recommendations are made.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.713919 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:11:p:2453-2473

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2012.713919

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:39:y:2012:i:11:p:2453-2473