Mixtures of concentrated multivariate sine distributions with applications to bioinformatics
Kanti V. Mardia,
John T. Kent,
Zhengzheng Zhang,
Charles C. Taylor and
Thomas Hamelryck
Journal of Applied Statistics, 2012, vol. 39, issue 11, 2475-2492
Abstract:
Motivated by examples in protein bioinformatics, we study a mixture model of multivariate angular distributions. The distribution treated here (multivariate sine distribution) is a multivariate extension of the well-known von Mises distribution on the circle. The density of the sine distribution has an intractable normalizing constant and here we propose to replace it in the concentrated case by a simple approximation. We study the EM algorithm for this distribution and apply it to a practical example from protein bioinformatics.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.719221 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:11:p:2475-2492
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2012.719221
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().