A bivariate Sarmanov regression model for count data with generalised Poisson marginals
Vera Hofer and
Johannes Leitner
Journal of Applied Statistics, 2012, vol. 39, issue 12, 2599-2617
Abstract:
We present a bivariate regression model for count data that allows for positive as well as negative correlation of the response variables. The covariance structure is based on the Sarmanov distribution and consists of a product of generalised Poisson marginals and a factor that depends on particular functions of the response variables. The closed form of the probability function is derived by means of the moment-generating function. The model is applied to a large real dataset on health care demand. Its performance is compared with alternative models presented in the literature. We find that our model is significantly better than or at least equivalent to the benchmark models. It gives insights into influences on the variance of the response variables.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.724661 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:12:p:2599-2617
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2012.724661
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().