EconPapers    
Economics at your fingertips  
 

Comparing two dependent groups via quantiles

Rand R. Wilcox and David M. Erceg-Hurn

Journal of Applied Statistics, 2012, vol. 39, issue 12, 2655-2664

Abstract: This paper considers two general ways dependent groups might be compared based on quantiles. The first compares the quantiles of the marginal distributions. The second focuses on the lower and upper quantiles of the usual difference scores. Methods for comparing quantiles have been derived that typically assume that sampling is from a continuous distribution. There are exceptions, but generally, when sampling from a discrete distribution where tied values are likely, extant methods can perform poorly, even with a large sample size. One reason is that extant methods for estimating the standard error can perform poorly. Another is that quantile estimators based on a single-order statistic, or a weighted average of two-order statistics, are not necessarily asymptotically normal. Our main result is that when using the Harrell--Davis estimator, good control over the Type I error probability can be achieved in simulations via a standard percentile bootstrap method, even when there are tied values, provided the sample sizes are not too small. In addition, the two methods considered here can have substantially higher power than alternative procedures. Using real data, we illustrate how quantile comparisons can be used to gain a deeper understanding of how groups differ.

Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.724665 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:12:p:2655-2664

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2012.724665

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:39:y:2012:i:12:p:2655-2664