Three estimators of the Mahalanobis distance in high-dimensional data
Thomas Holgersson and
Peter S. Karlsson
Journal of Applied Statistics, 2012, vol. 39, issue 12, 2713-2720
Abstract:
This paper treats the problem of estimating the Mahalanobis distance for the purpose of detecting outliers in high-dimensional data. Three ridge-type estimators are proposed and risk functions for deciding an appropriate value of the ridge coefficient are developed. It is argued that one of the ridge estimator has particularly tractable properties, which is demonstrated through outlier analysis of real and simulated data.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.725464 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:12:p:2713-2720
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2012.725464
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().