EconPapers    
Economics at your fingertips  
 

Ordinal ridge regression with categorical predictors

Faisal M. Zahid and Shahla Ramzan

Journal of Applied Statistics, 2012, vol. 39, issue 1, 161-171

Abstract: In multi-category response models, categories are often ordered. In the case of ordinal response models, the usual likelihood approach becomes unstable with ill-conditioned predictor space or when the number of parameters to be estimated is large relative to the sample size. The likelihood estimates do not exist when the number of observations is less than the number of parameters. The same problem arises if constraint on the order of intercept values is not met during the iterative procedure. Proportional odds models (POMs) are most commonly used for ordinal responses. In this paper, penalized likelihood with quadratic penalty is used to address these issues with a special focus on POMs. To avoid large differences between two parameter values corresponding to the consecutive categories of an ordinal predictor, the differences between the parameters of two adjacent categories should be penalized. The considered penalized-likelihood function penalizes the parameter estimates or differences between the parameter estimates according to the type of predictors. Mean-squared error for parameter estimates, deviance of fitted probabilities and prediction error for ridge regression are compared with usual likelihood estimates in a simulation study and an application.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.578622 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:1:p:161-171

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2011.578622

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:39:y:2012:i:1:p:161-171