A jackknife-based versatile test for two-sample problems with right-censored data
Yu-Mei Chang,
Chun-Shu Chen and
Pao-Sheng Shen
Journal of Applied Statistics, 2012, vol. 39, issue 2, 267-277
Abstract:
For testing the equality of two survival functions, the weighted logrank test and the weighted Kaplan--Meier test are the two most widely used methods. Actually, each of these tests has advantages and defects against various alternatives, while we cannot specify in advance the possible types of the survival differences. Hence, how to choose a single test or combine a number of competitive tests for indicating the diversities of two survival functions without suffering a substantial loss in power is an important issue. Instead of directly using a particular test which generally performs well in some situations and poorly in others, we further consider a class of tests indexed by a weighted parameter for testing the equality of two survival functions in this paper. A delete-1 jackknife method is implemented for selecting weights such that the variance of the test is minimized. Some numerical experiments are performed under various alternatives for illustrating the superiority of the proposed method. Finally, the proposed testing procedure is applied to two real-data examples as well.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.584524 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:2:p:267-277
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2011.584524
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().