Regression analysis of zero-inflated time-series counts: application to air pollution related emergency room visit data
M. Tariqul Hasan,
Gary Sneddon and
Renjun Ma
Journal of Applied Statistics, 2012, vol. 39, issue 3, 467-476
Abstract:
Time-series count data with excessive zeros frequently occur in environmental, medical and biological studies. These data have been traditionally handled by conditional and marginal modeling approaches separately in the literature. The conditional modeling approaches are computationally much simpler, whereas marginal modeling approaches can link the overall mean with covariates directly. In this paper, we propose new models that can have conditional and marginal modeling interpretations for zero-inflated time-series counts using compound Poisson distributed random effects. We also develop a computationally efficient estimation method for our models using a quasi-likelihood approach. The proposed method is illustrated with an application to air pollution-related emergency room visits. We also evaluate the performance of our method through simulation studies.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.595778 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:3:p:467-476
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2011.595778
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().