EconPapers    
Economics at your fingertips  
 

Testing variance components in balanced linear growth curve models

Reza Drikvandi, Ahmad Khodadadi and Geert Verbeke

Journal of Applied Statistics, 2012, vol. 39, issue 3, 563-572

Abstract: It is well known that the testing of zero variance components is a non-standard problem since the null hypothesis is on the boundary of the parameter space. The usual asymptotic chi-square distribution of the likelihood ratio and score statistics under the null does not necessarily hold because of this null hypothesis. To circumvent this difficulty in balanced linear growth curve models, we introduce an appropriate test statistic and suggest a permutation procedure to approximate its finite-sample distribution. The proposed test alleviates the necessity of any distributional assumptions for the random effects and errors and can easily be applied for testing multiple variance components. Our simulation studies show that the proposed test has Type I error rate close to the nominal level. The power of the proposed test is also compared with the likelihood ratio test in the simulations. An application on data from an orthodontic study is presented and discussed.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.603294 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:3:p:563-572

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2011.603294

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:39:y:2012:i:3:p:563-572