EconPapers    
Economics at your fingertips  
 

Understanding the epidemiology of foreign body injuries in children using a data-driven Bayesian network

P. Berchialla, S. Snidero, A. Stancu, C. Scarinzi, R. Corradetti and D. Gregori

Journal of Applied Statistics, 2012, vol. 39, issue 4, 867-874

Abstract: Bayesian networks (BNs) are probabilistic expert systems which have emerged over the last few decades as a powerful data mining technique. Also, BNs have become especially popular in biomedical applications where they have been used for diagnosing diseases and studying complex cellular networks, among many other applications. In this study, we built a BN in a fully automated way in order to analyse data regarding injuries due to the inhalation, ingestion and aspiration of foreign bodies (FBs) in children. Then, a sensitivity analysis was carried out to characterize the uncertainty associated with the model. While other studies focused on characteristics such as shape, consistency and dimensions of the FBs which caused injuries, we propose an integrated environment which makes the relationships among the factors underlying the problem clear. The advantage of this approach is that it gives a picture of the influence of critical factors on the injury severity and allows for the comparison of the effect of different FB characteristics (volume, FB type, shape and consistency) and children's features (age and gender) on the risk of experiencing a hospitalization. The rates it consents to calculate provide a more rational basis for promoting care-givers’ education of the most influential risk factors regarding the adverse outcomes.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.623156 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:4:p:867-874

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2011.623156

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:39:y:2012:i:4:p:867-874