A generalization of the Grizzle model to the estimation of treatment effects in crossover trials with non-compliance
Ali Reza Soltanian and
Soghrat Faghihzadeh
Journal of Applied Statistics, 2012, vol. 39, issue 5, 1037-1048
Abstract:
Compliance with one specified dosing strategy of assigned treatments is a common problem in randomized drug clinical trials. Recently, there has been much interest in methods used for analysing treatment effects in randomized clinical trials that are subject to non-compliance. In this paper, we estimate and compare treatment effects based on the Grizzle model (GM) (ignorable non-compliance) as the custom model and the generalized Grizzle model (GGM) (non-ignorable non-compliance) as the new model. A real data set based on the treatment of knee osteoarthritis is used to compare these models. The results based on the likelihood ratio statistics and simulation study show the advantage of the proposed model (GGM) over the custom model (GGM).
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.634396 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:5:p:1037-1048
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2011.634396
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().