EconPapers    
Economics at your fingertips  
 

Stochastic models for greenhouse gas emission rate estimation from hydroelectric reservoirs: a Bayesian hierarchical approach

Vinicius P. Israel and H�lio S. Migon

Journal of Applied Statistics, 2012, vol. 39, issue 5, 1069-1086

Abstract: Herein, we propose a fully Bayesian approach to the greenhouse gas emission problem. The goal of this work is to estimate the emission rate of polluting gases from the area flooded by hydroelectric reservoirs. We present models for gas concentration evolution in two ways: first, by proposing them from ordinary differential equation solutions and, second, by using stochastic differential equations with a discretization scheme. Finally, we present techniques to estimate the emission rate for the entire reservoir. In order to carry out the inference, we use the Bayesian framework with Monte Carlo via Markov Chain methods. Discretization schemes over continuous differential equations are used when necessary. These models applied to greenhouse gas emission and Bayesian inference for this purpose are completely new in statistical literature, as far as we know, and contribute to estimate the amount of polluting gases released from hydroelectric reservoirs in Brazil. The proposed models are applied in a real data set and results are presented.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.636417 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:5:p:1069-1086

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2011.636417

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:39:y:2012:i:5:p:1069-1086