Spatial measurement error in infectious disease models
Rob Deardon,
Babak Habibzadeh and
Hau Yi Chung
Journal of Applied Statistics, 2012, vol. 39, issue 5, 1139-1150
Abstract:
Individual-level models (ILMs) for infectious disease can be used to model disease spread between individuals while taking into account important covariates. One important covariate in determining the risk of infection transfer can be spatial location. At the same time, measurement error is a concern in many areas of statistical analysis, and infectious disease modelling is no exception. In this paper, we are concerned with the issue of measurement error in the recorded location of individuals when using a simple spatial ILM to model the spread of disease within a population. An ILM that incorporates spatial location random effects is introduced within a hierarchical Bayesian framework. This model is tested upon both simulated data and data from the UK 2001 foot-and-mouth disease epidemic. The ability of the model to successfully identify both the spatial infection kernel and the basic reproduction number ( R 0 ) of the disease is tested.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.644522 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:5:p:1139-1150
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2011.644522
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().