Two-step and likelihood methods for HIV viral dynamic models with covariate measurement errors and missing data
Wei Liu and
Lang Wu
Journal of Applied Statistics, 2012, vol. 39, issue 5, 963-978
Abstract:
HIV viral dynamic models have received much attention in the literature. Long-term viral dynamics may be modelled by semiparametric nonlinear mixed-effect models, which incorporate large variation between subjects and autocorrelation within subjects and are flexible in modelling complex viral load trajectories. Time-dependent covariates may be introduced in the dynamic models to partially explain the between-individual variations. In the presence of measurement errors and missing data in time-dependent covariates, we show that the commonly used two-step method may give approximately unbiased estimates but may under-estimate standard errors. We propose a two-stage bootstrap method to adjust the standard errors in the two-step method and a likelihood method.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.632404 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:5:p:963-978
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2011.632404
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().