EconPapers    
Economics at your fingertips  
 

An empirical comparison of Canonical Correspondence Analysis and STATICO in the identification of spatio-temporal ecological relationships

Susana Mendes, M. Jos� Fernández-Gómez, Mário Jorge Pereira, Ulisses Miranda Azeiteiro and M. Purificación Galindo-Villardón

Journal of Applied Statistics, 2012, vol. 39, issue 5, 979-994

Abstract: The wide-ranging and rapidly evolving nature of ecological studies mean that it is not possible to cover all existing and emerging techniques for analyzing multivariate data. However, two important methods enticed many followers: the Canonical Correspondence Analysis (CCA) and the STATICO analysis. Despite the particular characteristics of each, they have similarities and differences, which when analyzed properly, can, together, provide important complementary results to those that are usually exploited by researchers. If on one hand, the use of CCA is completely generalized and implemented, solving many problems formulated by ecologists, on the other hand, this method has some weaknesses mainly caused by the imposition of the number of variables that is required to be applied (much higher in comparison with samples). Also, the STATICO method has no such restrictions, but requires that the number of variables (species or environment) is the same in each time or space. Yet, the STATICO method presents information that can be more detailed since it allows visualizing the variability within groups (either in time or space). In this study, the data needed for implementing these methods are sketched, as well as the comparison is made showing the advantages and disadvantages of each method. The treated ecological data are a sequence of pairs of ecological tables, where species abundances and environmental variables are measured at different, specified locations, over the course of time.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.634393 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:5:p:979-994

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2011.634393

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:39:y:2012:i:5:p:979-994