Bayesian principal component regression with data-driven component selection
Liuxia Wang
Journal of Applied Statistics, 2012, vol. 39, issue 6, 1177-1189
Abstract:
Principal component regression (PCR) has two steps: estimating the principal components and performing the regression using these components. These steps generally are performed sequentially. In PCR, a crucial issue is the selection of the principal components to be included in regression. In this paper, we build a hierarchical probabilistic PCR model with a dynamic component selection procedure. A latent variable is introduced to select promising subsets of components based upon the significance of the relationship between the response variable and principal components in the regression step. We illustrate this model using real and simulated examples. The simulations demonstrate that our approach outperforms some existing methods in terms of root mean squared error of the regression coefficient.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.644524 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:6:p:1177-1189
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2011.644524
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().