EconPapers    
Economics at your fingertips  
 

Confidence intervals for estimating the population signal-to-noise ratio: a simulation study

Florence George and B. M. Golam Kibria

Journal of Applied Statistics, 2012, vol. 39, issue 6, 1225-1240

Abstract: This paper considered several confidence intervals for estimating the population signal-to-noise ratio based on parametric, non-parametric and modified methods. A simulation study has been conducted to compare the performance of the interval estimators under both symmetric and skewed distributions. We reported coverage probability and average width of the interval estimators. Based on the simulation study, we observed that some of our proposed interval estimators are performing better in the sense of smaller width and coverage probability and have been recommended for the researchers.

Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.644527 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:6:p:1225-1240

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2011.644527

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:39:y:2012:i:6:p:1225-1240