Confidence intervals for estimating the population signal-to-noise ratio: a simulation study
Florence George and
B. M. Golam Kibria
Journal of Applied Statistics, 2012, vol. 39, issue 6, 1225-1240
Abstract:
This paper considered several confidence intervals for estimating the population signal-to-noise ratio based on parametric, non-parametric and modified methods. A simulation study has been conducted to compare the performance of the interval estimators under both symmetric and skewed distributions. We reported coverage probability and average width of the interval estimators. Based on the simulation study, we observed that some of our proposed interval estimators are performing better in the sense of smaller width and coverage probability and have been recommended for the researchers.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.644527 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:6:p:1225-1240
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2011.644527
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().