Modelling of connected processes
Thaung Lwin
Journal of Applied Statistics, 2012, vol. 39, issue 8, 1623-1641
Abstract:
The problem of comparing, contrasting and combining information from different sets of data is an enduring one in many practical applications of statistics. A specific problem of combining information from different sources arose in integrating information from three different sets of data generated by three different sampling campaigns at the input stage as well as at the output stage of a grey-water treatment process. For each stage, a common process trend function needs to be estimated to describe the input and output material process behaviours. Once the common input and output process models are established, it is required to estimate the efficiency of the grey-water treatment method. A synthesized tool for modelling different sets of process data is created by assembling and organizing a number of existing techniques: (i) a mixed model of fixed and random effects, extended to allow for a nonlinear fixed effect, (ii) variogram modelling, a geostatistical technique, (iii) a weighted least squares regression embedded in an iterative maximum-likelihood technique to handle linear/nonlinear fixed and random effects and (iv) a formulation of a transfer-function model for the input and output processes together with a corresponding nonlinear maximum-likelihood method for estimation of a transfer function. The synthesized tool is demonstrated, in a new case study, to contrast and combine information from connected process models and to determine the change in one quality characteristic, namely pH, of the input and output materials of a grey-water filtering process.
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.663345 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:8:p:1623-1641
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2012.663345
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().