Large sample confidence intervals for the skewness parameter of the skew-normal distribution based on Fisher's transformation
Valentina Mameli,
Monica Musio,
Erik Sauleau and
Annibale Biggeri
Journal of Applied Statistics, 2012, vol. 39, issue 8, 1693-1702
Abstract:
The skew-normal model is a class of distributions that extends the Gaussian family by including a skewness parameter. This model presents some inferential problems linked to the estimation of the skewness parameter. In particular its maximum likelihood estimator can be infinite especially for moderate sample sizes and is not clear how to calculate confidence intervals for this parameter. In this work, we show how these inferential problems can be solved if we are interested in the distribution of extreme statistics of two random variables with joint normal distribution. Such situations are not uncommon in applications, especially in medical and environmental contexts, where it can be relevant to estimate the distribution of extreme statistics. A theoretical result, found by Loperfido [7], proves that such extreme statistics have a skew-normal distribution with skewness parameter that can be expressed as a function of the correlation coefficient between the two initial variables. It is then possible, using some theoretical results involving the correlation coefficient, to find approximate confidence intervals for the parameter of skewness. These theoretical intervals are then compared with parametric bootstrap intervals by means of a simulation study. Two applications are given using real data.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.668177 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:8:p:1693-1702
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2012.668177
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().