Many-to-one comparison of nonlinear growth curves for Washington's Red Delicious apple
Nairanjana Dasgupta and
Monte J. Shaffer
Journal of Applied Statistics, 2012, vol. 39, issue 8, 1781-1795
Abstract:
In this article, we are interested in comparing growth curves for the Red Delicious apple in several locations to that of a reference site. Although such multiple comparisons are common for linear models, statistical techniques for nonlinear models are not prolific. We theoretically derive a test statistic, considering the issues of sample size and design points. Under equal sample sizes and same design points, our test statistic is based on the maximum of an equi-correlated multivariate chi-square distribution. Under unequal sample sizes and design points, we derive a general correlation structure, and then utilize the multivariate normal distribution to numerically compute critical points for the maximum of the multivariate chi-square. We apply this statistical technique to compare the growth of Red Delicious apples at six locations to a reference site in the state of Washington in 2009. Finally, we perform simulations to verify the performance of our proposed procedure for Type I error and marginal power. Our proposed method performs well in regard to both.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.683168 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:8:p:1781-1795
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2012.683168
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().