Practical modeling strategies for unbalanced longitudinal data analysis
Enrico A. Colosimo,
Maria Arlene Fausto,
Marta Afonso Freitas and
Jorge Andrade Pinto
Journal of Applied Statistics, 2012, vol. 39, issue 9, 2005-2013
Abstract:
In practice, data are often measured repeatedly on the same individual at several points in time. Main interest often relies in characterizing the way the response changes in time, and the predictors of that change. Marginal, mixed and transition are frequently considered to be the main models for continuous longitudinal data analysis. These approaches are proposed primarily for balanced longitudinal design. However, in clinic studies, data are usually not balanced and some restrictions are necessary in order to use these models. This paper was motivated by a data set related to longitudinal height measurements in children of HIV-infected mothers that was recorded at the university hospital of the Federal University in Minas Gerais, Brazil. This data set is severely unbalanced. The goal of this paper is to assess the application of continuous longitudinal models for the analysis of unbalanced data set.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.699954 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:9:p:2005-2013
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2012.699954
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().