EconPapers    
Economics at your fingertips  
 

Influence measures in affine combination type regression

M. Revan Özkale

Journal of Applied Statistics, 2013, vol. 40, issue 10, 2219-2243

Abstract: The detection of outliers and influential observations has received a great deal of attention in the statistical literature in the context of least-squares (LS) regression. However, the explanatory variables can be correlated with each other and alternatives to LS come out to address outliers/influential observations and multicollinearity, simultaneously. This paper proposes new influence measures based on the affine combination type regression for the detection of influential observations in the linear regression model when multicollinearity exists. Approximate influence measures are also proposed for the affine combination type regression. Since the affine combination type regression includes the ridge, the Liu and the shrunken regressions as special cases, influence measures under the ridge, the Liu and the shrunken regressions are also examined to see the possible effect that multicollinearity can have on the influence of an observation. The Longley data set is given illustrating the influence measures in affine combination type regression and also in ridge, Liu and shrunken regressions so that the performance of different biased regressions on detecting and assessing the influential observations is examined.

Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.809568 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:10:p:2219-2243

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2013.809568

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:40:y:2013:i:10:p:2219-2243