Influence measures in affine combination type regression
M. Revan Özkale
Journal of Applied Statistics, 2013, vol. 40, issue 10, 2219-2243
Abstract:
The detection of outliers and influential observations has received a great deal of attention in the statistical literature in the context of least-squares (LS) regression. However, the explanatory variables can be correlated with each other and alternatives to LS come out to address outliers/influential observations and multicollinearity, simultaneously. This paper proposes new influence measures based on the affine combination type regression for the detection of influential observations in the linear regression model when multicollinearity exists. Approximate influence measures are also proposed for the affine combination type regression. Since the affine combination type regression includes the ridge, the Liu and the shrunken regressions as special cases, influence measures under the ridge, the Liu and the shrunken regressions are also examined to see the possible effect that multicollinearity can have on the influence of an observation. The Longley data set is given illustrating the influence measures in affine combination type regression and also in ridge, Liu and shrunken regressions so that the performance of different biased regressions on detecting and assessing the influential observations is examined.
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.809568 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:10:p:2219-2243
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.809568
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().